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Quantization of closed orbits in Dirac theory by Maslov’s
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Akademichesky Ave. 4, Tomsk, 634055, Russia
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Abstract. On the basis of Masiov's complex germ method for the Dirac operator in
external electromagnetic and torsion fields the quasi-classical spectral series corresponding
within the limit A—0 to the cleciron motion along closed stable orbits has been
constructed. The quai-classical energy spectrum is found from the condition of quantiza-
tion of these orbits, and the quasi-classical asymptotics corresponding to the latter form a
complete set of localized quantum state. The method is illustrated in all details by the
clectron motion in the axial fields as an example.

1. Introduction

It is well known that there is a variety of quantum-mechanical problems which can be
solved if only one used a construction of quasi-classical asymptotics. A strict theory of
quasi-classical asymptotics with real phaseswhich generalizes, in the multidimensional
case, the Einstein—Brillouin—Keller method, and which includes both the spectral and
Couchy problems for #™{pseudo) differential operators was developed in papers
[1,2].

Masiov’s method—a method of the canonic operator (with real phase)—imposes
strict conditions on the classical system: an n-parametric family of #-dimensional
Lagrangian tori which -are invariant with respect to the phase flow generated by the
corresponding Hamiltonian system is to exist, Wthh in fact, is equaivalent to its
complete integrability.

When a case cannot be integrated a family of n-duneusmnal Lagrangian tori does
not exist. Nevertheless, it is often the case that the Hamiltonian system which cannot
be integrated, possesses tori with smaller dimensions than that of the configuration
space. This situation is typical of classical systems possessing a certain (incomplete) set
of symmetries, e.g. for a charge in an external electromagnetm field with axial
symmetry.

A theory of the quasi-classical quantization of non-integrable Hamiltonian systems
was developed in [3-6] for the scalar #~'-(pseudo) differential operators, and in 3, 7]
for systems with matrix Hamiltonians as well as equations with an operator-valued
symbol. The construction of the Maslov’s complex germ underlies this theory.

The main point of this theory is the fact that the task of constructing the quasi-
classical asymptotics W in spectral problems for both scalar and matrix 2~ '-(pseudo)
differential operators (E is a spectral parameter) is reduced to constructing geometri-
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cal objects in the 2n-dimensional phase space—a family of the Lagrangian manifolds
A*(w) with a complex germ r'(w) (w=(wy, ..., w,) are parameters of this family
Eecw). A'(w) result from solutions of the classical Hamiltonian system and their
dimension is 0<k<n. In the case of finitc motions A*(w) are known as isotropic
incompletely dimensional Lagrangian tori. The complex germ r*(w) is generated by a
special set of n linearly-independent complex solutions of the system in variations
which are the linearization of the initial Hamiltonian system in a neighbourhood of
AMw).

It should be noted that the task of finding the family of isotropic manifolds with a
complex germ is a separate and complicated problem in itself. In particular, in [4, 5] it
was noted that the problem of the existence of a complex germ is equivalent to the
orbital stability of the manifolds A*(w), and for the case k=1 it is solved in terms of
the Floguet theory for linear Hamiltonian systems with periodic coefficients. At k=2
the problem of constructing r"(w), which is naturally associated with the multidimen-
sional analogue of the Floquet theory, has not yet been studied sufficiently (see [7] for
details).

A discrete set [Af(wy), r"(wy)] which generates a spectral sedes (Wg,, Ex(f),
#—0) is chosen from the family of isotropic tori with the complex germ [A*(w), r"(w)]
according to the quantization condition of the Bohr-Somerfeld type. Here, N is a set
of quantum numbers, and Ey(#) are eigenvalues corresponding to the quasi-classical
eigenfunctions W, . Under these conditions it is important to take into account that in
terms of the quasi-classical approach to the spectral quantum problems one deals with
construction of only single spectral series in this or that domain of the energy spectrum
E'< Ey(h)=<E". The classification of the spectral series is based on that of motions of
the corresponding non-integrable classical system with respect to the incompletely
dimensional Lagrangian tori A*(w), and the numbering of the energy levels Ey, on the
quantization conditions for these motions.

The quasi-classical asymptotics Wz, obtained are well approximated almost every-
where by the functions of the form W, ~e"5p, where, unlike the usual real wks
method, the phase S is complex and Im $=0. In view of this the functions W, possess
the following important property: within the limit 2 — 0 they are localized in a small
(of the order of /£'?) neighbourhood of the ‘light’ domain where Im § = 0. This domain
is the projection of a family of phase trajectories which form the tori A*(wy) onto the
configuration space of the classical system. Hereafter, the wavefunctions ¥, will be
referred to as the stationary trajectory-coherent states (Tcs) and the corresponding
approximation in the spectral problems of guantum mechanics—the stationary
trajectory-coherent approximation (the Tc-approximation).

The main aim of this work Is to give a consistent description of construction of the
quasi-classical spectral series of the Dirac operator by the complex germ method for
the case when the corresponding relativistic classical system permits a family of one-
dimensional (k= 1) invariant isotropic manifolds A'(E)—closed phase curves.

2. Complex germ method for closed orbits

2.1. Families of closed phase curves with the complex germ

Let A*(p, ¢) be the classical Hamiltonian function defined on the 2n-dimensional
phase space RIXR;, g=(¢%, p=(p:), a,b=T,n. Compare this with a one-
parametric in E; family of the Hamiltonian functions
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H(p,q,E)=2"Yp,q)—E, E'sE,<E" : (1)
Suppose that the Hamiltonian system )

dp dg .

5_ 5= — Hq(p= g, ED) a;=q=-Hp(Pa %Eo) (2)

perimits a smooth family of closed phase curves
AJ(E0)={P=P(T= EO)? q=Q(t’ EO)sErS‘EOSE"} (3)

which satisfy the condition | (Q|#0. The period in 7 of the trajectory AY(E;) will be
denoted by T(E,).

The Hamiltonian system (2) is linearized in a nclghbourhood of phase curves (3).
As a result, one obtains the system in variations

da
i (7, Eq) = Hyar(z, Eg)a(z, E) (4)

where a(z, Ey)=(W(z, Ev), Z(z, E;))* is, in a general case, the complex 2n-
dimensional vector, and Hyar(z, Ey) is the 27 X 2r-matrix of the form

—-H, —H
Hyax(%, Ea)=( o H““’) (z, Ey) | )

24 Pq

where 1 X #-matrices

o 9°H . o*H .
98~ aqaaqb ap 6qa0pb ete.

were calculated for the points of the phase trajectory AY(Ey). Equation (4) is a linear
Hamiltonian system with periodic coefficients, and one can use the general Floquet
theory for such systems.

It should be reminded that the solution a(r Ey) of (4) is called the Floquet
solution, if there exists a constant A, the Floguet multiplicator, such that

a(z+ T(Ey), Egy=2a(r, Ey) —x< <, (6)

It is the multiplicators that are eigenvalues of the monodromi matrix of (4). The
numbers @ determined from the condition A=¢“T% are called the characteristic
Floguet indices. One of the obvious Floquet solutions of (4) is a real solution

ao(T, ED) = (P(Ta EO)? Q(Ta EO))T 7 (7)

with the multiplicator A= 1.

Now, suppose that system (4) permits a set of n—1 complex Floquet solutions
o ap(z, Eg)=(Wi(r, Ey), Z,(t, E})T, k=T, n—1 which are linearly independent of the
solution ay(z, E;) and which satisfy the conditions

{a, a}=0 {a, a}=2i6y ~  i,j=0,n—1 Lk=T,n-1
a, (T"l" T(Eg)) - exp(iwk (Eo) T(E(]))ak(f) Im W= 0 (8)

where the symbol * denotes complex conjugation and the braces {. , .} imply the anti-
symmetric scalar product. Then the complex r-dimensional plane in C* enveloped by
the vectors a;(z, Ey) is called a complex germ in the point (P(z, Ey), Oz, E;)) on the
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phase curve A(E;) and is denoted as r*(z). A family of planes {r"(r), 0<st<T(E,)}is
the complex germ r”(Ey} on A'(E,). As was pointed out in the introduction, the
geometric object [ANEy), r"(E,)] is a central construction responsible for the quasi-
classical results of the spectral quantum problems corresponding to the motion of the
classical non-integrable system along the incompletely dimensional isotropic tori.

Hereafter, it will be supposed that the above family of the T(E;)-periodic Floquet
solutions (8) has been constucted. In a particular, but important for applications, case
when the family of the Hamiltonian functions (1) permits the cyclic variable
g(mod 2x), the constuction of the complex germ is described in Appendix 1.

2.2 Construction of the ‘occupation numbers representation’

Let [p,={g°=Q%(z, Ey)} be a projection of the closed curve A'(E;) onto the con-
figuration space Ry. Consider the equation

2:(Q()Q°(7, E) (g~ Q%(z, Eq)) =0 (9
where 74 (@ (1)) = %.(q} ;=01 and 724(g) is the metric of the configuration space R;.
Due to the condition |Q|#0 in a small neighbourhood U;(Q(7, Eg)) of each point
Q(z, Ey) of the curve g, equation (9) can be solved with respect to the parameter 7
and, thus, it gives a parametrized-in-r family of hyperplanes v =z(q, E,) such that

0%, a=1+0(lg— Q). (10)

Henceforth, expressions like A (%) should be understood as taken at z=1(g, E;y). From
the vectors W,(z, E;) and Z;(z, E,), which form the Floquet solutions (8) a;(, Ey),
j=0,n—1, we shall make up square matrices B(r, Eg) and C(7, Ey) of order n

B=(P,W,,...,W,.) C=(2,Zis- -, Zumy)-. (11)

The matrix C(z, Ey) is non-singular and, in this way, we find the symmetric matrix
G =BC™! with the positively defined imaginary part

Im G>0. (12)

We shail introduce a complex phase S(g, Ey)=[S(7, ¢, Eg)]|s-xy in the neighbour-
hood Uy (Ig,), where

S(r7 q, EU) = J.f (P(rr EO): Q(ts EO)) dt+ (E— ED)T

+(P(z, £y, Ag)+HAq, G(z, E)Ag). (13)
Hereafter {.,.) implies a Euclidean scalar vector product, Ag=g—0(z, £;), and
E=Ey+hE,+ O(h2).
We shall introduce a class of functions of the form

i N

Yi= {Nu(ﬁ) exp (g S(qs Eﬂ)) 2 Cx(r) (Aq/'\/f;)"’ N=0,1,.. } (14)
(%!

where x is a multi-index: K= (ky, %, . . . , K}, |K| =Rt 1+ - -« +x,, (Ag/ VA=

T (Ag* V), c(r): Ri—C', 8(g, E,) is the phase defined above, and Ny(#) is the

normalization factor (with respect to L;norm). Let the operator F: Y5— ¥ be
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denoted through O(%7), a>0. For this operator an asymptotic estimation | £p||,,g » =
O(h%), Ve Y; in the limit at #—0 is fulfilled. In particular, for the operators

i Aq =q- Q('E', EO) Aﬁ=ﬁ"— P(Ts EO) (15)
where p = — 149, |- consr» We shall have _ . :
Ag= 0" Ap=O(HY). (16)

The creation and annihilation operators are associated with the vectors g,(z, Ey),
a;(z, Eo) by the rule

a,={Q(z), APY—(B(7), Agq)

] .

4= w4, Ap)—(Wi(z), Ag)) (17)
1 " ®

4t = gy (2u(D), Ap) = Wi(2), Aq) I=T,n=1

for which the usual Bose commutation rules hold

[dOS é!] = [ﬁﬂs éi+] = [ﬁk7 aAI] = [aﬁ;:? &?‘I =0

(18)
[ﬂk, ] Oy
We shall introduce a ‘vacuum’ state
i
0.0= N exp (5560, ) 19

where J(7. Ey)=det C(z, Ep), and by using the creation operators 4/ we shall
construct the ‘occupation numbers representation’, i.€., a set of functions of the form

r—1 1 .
v, 0= [ g @10, 2 (20)
=1

It is not difficult to see that functions (20) belong to V3. We shall compare the classical
Hamiltonian function A*)(p, g) (1) with the Weyl-ordered quadratic operator

A= Eo+ao+ H{Ag, 45 (1) Ag) + (Aq, A5 (2) AP) + (AP, 4 (1) Aq)
+{Ap, A (DAY, (21)
Here ’ ’

GET | N

7=0(=. Ey)

etc. Then the asymptotic estimation [ —i#%d,+ (Ey,— E) +do = O (%) holds on the set
Y3. As a result of equations (18) and (19) it is not difficult to show that functions (20)
are the ‘vacuum’ ones for the operator d,

dolv, T)=0 ' ' (22)
and satisfy the Schrodinger equation with the square-law Hamiltonian (21)
(—ihe, + 15" — E)lv,5)=0. (23)
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3. Quasi-classical spectral series of the Dirac operator corresponding to the family of
closed phase trajectories AY(Ey)

In this section asymptotic spectral series corresponding at #—0 to motion of a
classical particle along closed orbits of the configuration space are constructed for the
Dirac operator in external electromagnetic and torsion fields.

3.1. Statement of the problem

Let the notation used hereafter be specified. The Cartesian coordinates of the
Minkowski space with the signature (4, —, —, —) will be denoted as x'=
(ct,x,y,2)=(x"x9,d,b,é=1,2,3;i,j,k=0,1,2,3 and the curvilinear coordinates
g*=(q%q",a,b,¢=1,2,3; a,8,u,v=0,1, 2,3, respectively. We shall restrict our-
selves to the curvilinear coordinate systems with a stationary metric ds?=c2df?—
Hab (Q)dq adq b? where

ax? 5 oxb
nab_aqa dsaqb *
If one introduces three vectors e, with the components e = 8x%/8q°, the metric tensor
7., €an be represented in the form 77, = (e,, €).
The Dirac equation in the arbitrary curvilinear coordinate system g* in the

Minkowski space will be written as
3in
y“B,— me——- yiS, | =0 (24)
where

d e

Pﬂ =ih 3_q‘u — A,

e=— ¢, is the electron charge, A, are potentials of the external electromagnenc field,
and S, is the torsion pseudo-vector The Dirac matrices y#, }* are defined by the
CORdlthﬂS y“y + y s i y" =iy, y>=—(i/4))e wras VYV y? and can be taken in

abyda,d

the form y°= p;, y*=5"efy?, y*=—p;, where y=(y°)=p;a, @=p,E. Here p;, p3, =
are the Dirac plane matrices in a standard representation.

In our case the Dirac equation (24) will take the form

(—ihd,+ H)¥ =0 (25)
where the Weyl-ordered operator Hy, may be represented as follows
where
c
Hy= —Ea“(egpa-!- P,ed)+ psmc+ed, (27)
ic
Hi=—a‘e ( P150+ES) (28)

2
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Here a’ are the components of the vector-matrix e, and S;=(S;, —S§) are the
Cartesian components of the torsion pseudo-vector.
Let the spectral problem

(Hp—E)¥;=0 (29)

be considered for the Dirac operator Hy, (26). In (29) E is the spectral parameter. On
the set of equation (29) solutions one can introduce the inner product

+
(W |00 = f VRl W,  g=det(na). (30)

One may denote the closed phase trajectory of a classical electron with the energy E;
through ANE)) ={p=P(r, E;), g= Q(z, E;)} where the functions P(z, E,), Q(z, E)
are the T(E;)-periodic solutions of the Hamiltonian system (1) with the relativistic
Hamiltonian A*)(p, q) =eAq +[c*P*+ m%c |2, P=(P;), Pi=e¥p.+ (e/c)A,).

It is assumed that the sequence of the numbers Ey= Ey(#) (where N is a set of the
corresponding quantum numbers) and that of the functions W (g, fa) make a
quasi-classical spectral series of the Dirac operator Hy, corresponding in the limit
#—0 to the family of closed phase curves A'(E,), if the following conditions hold:

(1) lim EN(k)=E0 EIS-EOS-E" (31)

(which implies a correspondence of the qua51-class1cal set of energy levels EN(ﬁ) to
classical motion with energy Eg).
@ (Hp- Ex()¥ eyonlg, ﬁ) =0®H*). . (32)

(3) The functions W, (g, i) at #—0 are localized in a small tube-like neighbour-
hood Us({z,) with the diameter é =%'? of the closed curve I, ={g=0(z, E;)}.
(4) The functions Wg (g, #) form at #—0 the orthonormal set of states with an
accuracy of O(2*?)

(IIIEN, | IIIEN D= an + O(Fl 1"2). (33)

Taking into account these properties we call the asymptotic eigenfunctions W, the
stationary trajectory-coherent states (rcs), and the corresponding approximation
of (1)~(4) for equation (29) a stationary trajectory-coherent approximation. The
dynamic Tcs of the Dirac equation were constructed earlier in papers [10].

3.2. Stationary 7Cs of the Dirac operator H,,

Consider the problem of constructing explicitly a set of approximated solutions W, of
the Dirac equat1on (29) which satisfy condition (32).
The main symbol-matrix Hy(p, g) of the form

Hyp, q)=caP+p,mc*+eAy (B34

corresponds to the Dirac operator Ay, (26). Let the spectral propertles of matrix (34)
be considered. The equation

Hyf =S (35)

possesses the two two-fold degenerate eigenvalues
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A3 p, gy=eAy*e e=(c*P*+miH2, (36)

The eigenvectors fi*)(p, ), j=1,2 corresponding to them are combined into two
4 R 2-matrices

- _ 1 &+ mc?
P 9= [2e(e +mcH] 2\ coP

I _ 1 caP
0.0~ - cme)

where 6=(0, 03, 0;) are the Pauli matrices. It is assumed that the Hamiltonian
function A¥)X(p, g) permits a family of closed phase trajectories with the complex
germ: JAYEg, r*(Ey). Then it is possible to use the results of section 2. All the
denotations are preserved.

A number of identities will be required below, to which the matrices

(37)

I1:(7) =M-(p, 9)

p=P{z)
g=0Q(z)

hold true, and, according to (37) one has
. () 1 1+y71
=By \Weyaq
1 (1/c)eq
O i sy

where y=¢/mc?, §=e, )0 and ,(z) =e,(q)|,-ox- The matrices I1.(z) satisfy the
orthogonality and completeness conditions

(38)

Ip0=8, > ILIL=1  &==1L o (39)
5
Also, let a be an arbitrary vector, then
(1 (o, L, = 2 T (4, )+ Lol ), (40)
where

. q
dl = (0’, q) m*jﬂ.

2 (&, o)1, = ITy{dy, ) =~ TIxlo, § X ), (41)
where
d,= (o, '}—-—i——+ “lg.
2 ,9 C2(1+'}’_1) }' .
o 1 .
(3) pslly=xy I'I¢+EIL~.(0',Q}. (42)

1
4) oIl = i; Do, -y 1. (43)
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d
(5) & O, =1l ds+I1zd; (44)
where

i (0.4%q) 1/ (. YD .

bmsaiey e i)
and

- d‘

=37

The asymptotic eigenfunctions ¥z(g, #) of the Dirac operator (26) are sought for

as
IPE(Q: ﬁ) =qu(q7 'E'(Q‘), ﬁ) (45)
The asymptotic eigenvalues E corresponding to them and satisfying-condition (31) are

found as the following expansion over #: E= E,+ #E,+ O(#%). In this case (32) results
in the following conditions ‘

6o We(g. )= O (%) | T

7]
(= ihc(0, 0) 52 e~ | el 1) = 05 )
~where
Voerd
=" 5

Let us represent Wy as a linear combination

V(g ) =[ML.(Duf g, )+ T (@DuE (g, 7). (48)

It is assumed that the two-component spinors z$” can be represented as u§ (g, #) =

g " ()o(r)p(g, ), where ¢(g, 7)€ Y3 and the spinors v(z) are liable to determi-
nation. Let the left-hand side of (47) be expanded in the Taylor power series over the
operator Ag and Ap to the second order included, and the asymptotic estimations (16)
be used. Then, substituting (48) into (47) and making use of equations (40)—(44), one
obtains

LB (G, APY -+ eAA o+ A (D) — ib(dy+ dyds) + ML, HLTT, — Eug?)
—{ds £, — cldy, APY+ifi(dy — dads) = AL, H T JutD)
+IL[{— B~ (4, AP+ eAd g+ A1x) +ih(ds+ duds)
+ AL HL I~ EJul)
_{d B, —cldy, APY+ih(d,— dpds) — ATT_ H\TLJuf ] = 0. (49)
In (49) through F, and d; we denote the following expressions: F=
(=ih8,+ A5 — E) — 6,— 482D + hE,, ds={(0, §)/[cy{1—y )] and A is the square-

law operator of the type A =387+ 452 The expression *A(7) implies the kth term in
the Taylor power expansion over the Ag and Ap operators of the Weyl-ordered -
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operator A =A(g, ) with the symbol A(p, q):

i) a\\*
*A(T) ={(<Ap, -_>+ <Aq,-—_>) A(p, q)} P (50)
% % prsy
Let the spinors 45" in (49) be expanded over 4
w = u¥E 1 72 U2 4 ) 4 O(B?) (51)

and the terms to the same powers of # be gathered together, where a chain of the
following conditions is obtained

I - 1 . =
ug'=0 ufD = Oi uf =2 (Qul )+ QuuE?) (52)
where the él and an operators have the form
R0 =dsay+ 1?0, hV0,=cd,, 8'P) (53)
- [ ~
10, =1~ (81400 — ds(F+ &) +detdy, 67P) ~ in(dy—da ) + AL H,11,. (54)

Taking into account equations (52)-(54) a similar procedure for the expression with
the symbol II. in (49) results in the equation for the two-components spinor u%+
which, after further simplifications, is reduced to

d ]
[ —in8,+ A5 —E—ih ar In (Vg(@)"* + ko, B(z))
a3 fl 12

28(:2)/2(1 ¥ "2)2
Here the vector ®(7) (the ‘polarization’ vector) is given by

5 (10— ) 5 (8@ s i)

ds Q1a0:| ugt = (35)

B(7) = (56)

where E(7) and H(7) are the Cartesian components of the external electromagnetic
field. If in (55) the spinor u¥* is taken to have the following form

ug?=(g@) . Do () (57)

then, as it is not difficult to see, in view of (22) and (23), the variable 7 gets detached
and the equation takes the form of the matrix equation of the Pauli type for the two-
component spinor o(7)

d
( —i &t (g, %(1:))) v(t)=0. (58)

Hence, a remarkable conclusion follows: the problem of constructing the states W
satisfying equation (47) is reduced to solufion of an ordinary linear differential system
(58) relative to the variable 7 with a subsequent substitution of the function r=1(g)
into the solution (v(z) — v(z(q))).
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Using (45), (48) and (52)—(54) one can get the explicit expression for the function

1 - -
Wil )= IO 3,10 (20, +h0) |u e

/2
+fz“2[n+(r) +gn_<r)g‘l}ug“(q, B +RILDuE g, 7). (59)
It follows from (22) and (57), first, that the functions Wy satisfies (46) directly, and,
second, that they are determined only with an accuracy to O(h%), since they contain
the two arbitrary two-component spinors u 3+ and u¥%). They can be found from the
higher orders. '
Hereafter, we shall deal only with the leading term of the asymptotic (59) which,
according to (45) and (57), has the form

@E<q,ﬁ>=(n+cr)v(r) (g[z;—)?) (60)

z=1(g)

3.3. Quantization condition of closed orbits A'(E,)

To construct a quasi-classical spectral series of the Dirac opeiator H,, let the functions
satisfying the perjodicity condition be selected from the family of functions (60)

‘i’E(q T+ T{Eg))= ﬁ’s(q » T). (61)

It can be shown that this condition leads to the Bohr—Sommerfeld type quantization
of the family AY(E;) and distinguishes a discrete set of energy levels Ey(#) in the
domain of continuous changing of the parameter Ey(E'<E,<E").

It follows from the results obtained in the previous section that in the stationary
TC-state the interaction of the electron spin with the external field is described by
equations (58) when an electron motion is taken to occur along a closed orbit A'(Ey).
Since there is the condition B(zr+ T(E,)) = B(z), equation (58) represents a linear
Hamiltonian system with periodic coefficients. Like in' the case of the Hamiltonrian
system in variation (4) it will be assumed that (58) permits a set of two lineearly
independent Floquet solutions v, { = =+ 1 satisfying the orthonormatity and complete-
ness condition )

oy(z + T(Eo)) = exp ( ~ 103 (E) T (Eo))oy(z) Imwi(E)=0 (62)
;;-U;=a§'§ 2 U;;;-:l. . (63)
&

Some of the principal properties of the Floquet solutions of (58) are given in
Appendix 2. '

Now it is not difficult to find the conditions under which relation (61) holds.
Substituting into (61) the explicit form of the function ¥; (60) and making use of (8)
and (62) one gets the quantization condition for the family [A'(E,), r¥(E;)] as follows

T(Ey) .
J' (P(T: EO): Q(rﬂ -E(J»d'r + hT(Eﬂ)EE
Q

= 2l + 1T (Ey) (Zwk (E)(ve+1/2) + cuf;(Eo)) + 0. (64)

k=1
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Whence it follows, for example, that (61) is sure to be fulfilled if the conditions are
satisfied

T{Eg) .
f (P2, Ex), Olr, Eqyde=2hl(h) (65)
i}
Ew,.(Eu)(w-f-l/z)m;(Eu) (66)

Here the integer sequence {(#) and the parameter % should be tied by the condition

1 T{Ep) .
lim #1 (%) =5 f {P(z, Ep), Q(z, Ep))dr
1]

h—{

where E, is the given value of the electron classical energy corresponding to the closed
orbit AY(Ey). In this case condition (65) defines a discrete set of energy values
E®(h) = Ey(hI(#)) in the neighbourhood of E, such that

lim EO#m) =E,.

Thus, equations (65) and (66) determine the spectral sequence of energy levels up to
O (k™) as follows

Ex(B)=E 0 e(W)=EDGR)+RED, . c(R)+ O (H?) (67)

where
E(h)= Ey(hl(R)) (68)
Ef ()= E @ (E{ (7)) (v, +1/2) +w;(E§‘”(h)) (69)

It can be shown (sse Appendix 3) that in expanding with respect to #, 2—0, the
quantization conditions (65), (66) are equivalent with the accuracy to O (%) to the
quantization condition of the Bohr—Sommerfeld type for the family A(E), where
E=E,+hE+ O(RY

1
z_az'ﬁilw)“’ (,E),dQ(z, E)) = l(ﬁ)+—éx—)(2 wk(E)(vk+1/2)+cu;(E)) (70)

4, Quasi-classical spectral series of the Dirac operator in axially symmetric
electromagnetic fields

As follows from the previous sections, while defining the spectral series of the Dirac
operator, the construction of the complex germ r*(E,), i.e. a set of n Floquet solutions
of the system in variations satisfying condition (8) is mainly used. The conditions
which the family of closed phase curves A'(Ey) is to satisfy so that the complex germ
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should exist, may be obtained, as has been pointed out in the introduction, in terms of
the Floquet general theory and they are given in [4].

In the case when the classical Hamiltonian function permits only one cyclic angular
variable (see Appendix 1}, the problem of the complex germ existence is solved in a
fairly simple way (see, for example, [5]). Below three examples of such systems are
considered, and the quasi-classical spectral series of the Dirac operator corresponding
to an electron motion along an equilibrium circle are constructed for the family A(I).
To simplify the description, in the first and second cases the torsion fields are taken to
be equal to zero.

4.1. Spectral series of relativistic electron moving in axially symmetric magnetic field
with weak focusing

In cylindrical coordinates (¢°) = (p, ¢, z) let the electromagnetic field potentials be
taken as

A,=Ag=0 (71)

bp*™1 2—q) z°
4,=0 L [1+Q( q) _]

W_z_g 2 pz

where 0<g<1 is the focusing parameter, and »=constant. The corresponding
relativistic Hamiltonian function is as follows

e 2 112
ﬁ‘*’(p,q)=6(pﬁ+p'2(P¢+;Aw) fp§+m3c2) =celp,q)-  (72)

Function (72) permits the cyclic angular variable g(mod 27) and defines the family of
phase curves A'({) corresponding to a stable electron motion along the circle with the
radius Ry(Z), the revolution frequency wy(/) and the orbital angular momentum p, =7
(see Appendix 1): ’ ‘ '

ADy={p=RyD). p= ()7, 2=0,p,=0,p, =1, p.=0}, (73)
where ’
c (2—¢q
2= V= — [ — 2
Ry™*(0) eb(l —_q)

wo(I)=eH (R co, gs=¢(1), and H(Ry)=b/R{(I) is the magnetic field magnitude on
the equilibrium orbit (73). The Floquet solutions of the system in variations forming
the complex germ r*({)-have the form

ay(z,1)=(0,0,0,0, wy(l), )T

ai(z, I =¢e"7(0,0,ia;", 0,0, a)T CwoD=wlD(”? - (7Y

. 1o, T
a7, )= e""zf(iaz‘ 50.0, 0 5T 0) o) =oI)(1-g)"*

where o, = (c/gwy)"?, k=1, 2. According to equation (9) the family of hyperplanes
v=1(gq) = @/w(I) corresponds to the AY() curve.
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Now, let an explict expression for energy spectrum (67) be obtained. Condition
(65) leads to quantization of the electron orbital angular momentum: {= #i(%). Here,
a set of integer numbers (%) is defined by the condition

lim Al(h) =1,

fi—s0

where the value I, corresponds to the A'(ly) orbit lying at a given emergy level
Eo(Ip) =A™ piy- Caleulate the energy correction Ef due to the interaction of the
electron spin with the external field. If no torsion fields are available, the ‘polariza-
tion” vector %(z), defined in (56) is given by

e
B=—7HR) (75)

where H(R,) = (0, 0, — H(R,)) and is constant. Whence, according to (A2.5) one has
Ei=hoi=hi|B|=3Lhw,, L=+ 1. The expression for the quasi-classical series of the
energy levels takes the form

Ep vy t(R)= EP(R) +%h wolhl) + 1 >, w (W) v+ 1/2) + O (A?)

k=1
v, ¥=0,1,2,. I=%1,£2,... E=x1

where ES"J()E:)=(ezRﬂ(}‘d)1':{2(,.'20011))+m2c“)"2 is the leading term of the electron
energy. Now, make use of the definition of the cyclic frequency
BEy(I)

oI

Then, with the accuracy to O(#2) the following expansion is true:

(76)

we(l) =

EQnW)=EP() + 2 +067 10,

from which it follows that

Ep o W)= EQys(B) + 1 2 w, (B (v + 1/2) + O (1), (77
k—

The value (I + §/2)# is likely to be a total angular electon momentum allowing for its
spin.

For the quasi-classical wavefunctions ‘i’s,, (60} corresponding to the energy levels
(77}, it is not difficult to obtain the following expression

etr (W, wy)?
liIEt y ;(qa h) = "+ 172
e 7T (ZhRgz Yay l'lfz')

{exp( 2/2h)H,,[(W1 @) 1,2) exp(— W3(p— Ry)¥/2H)

xH (WZ(P( 5 w")) }IL(‘:) i (78)
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where :
- ( eH (Ry) ” )m) 12 W,= (eH ERD) (1- q)uz) 12 Ro=Ro(#l)

H(&) are Hermite polynomials, and the constant spinors f;, {=+1 are defined in
(A2.5). It follows from the form of functions (78) that at -0 they are localized in
the neighbourhood of the equilibirium circle with radms Ry(I} and that they form a
complete orthonormal set of functions.

It should be noted that the quasi-classical energy spectrum (77) constructed above
coincides with that obtained earlier in [8] by the variable separation method in the
harmonic aproximation.

4.2. Electron spectral series in the class of axially symmetric focusing electric fields

Consider an electron motion in an axially symmetric focusing electric field which, in
cylindrical coordinates (g%) = (p, @, z), is defined by the potentials

A=A,=A,=0  Ag=®yp* O (79)

where ®,=constant, and g is the focusing parameter. :

In this case the Dirac operator Hj, permits the symmetry operator f,= —i#8,,
therefore, at the very beginning it is reasonable to separate the variable z and look for
the quasi-classical stationary states ¥ in the form

qu(q h) eikzzli[E(P: &, h‘) (80)
The classical Hamiltonian function corresponds to the func’uon W
2N p. q)=ce(p, q) +eDop* ' 81

where £(p, g) =(p5+p P+ ki+m?%". In the phase space possessing the coordi-
nates (p,, py» £, @) the Hamiltonian system with the Hamiltonian (81) defines a farme
of closed phase curves ,

AI(I) {P RO(I)a ‘P wO(I)r pp 0 Pq: } (82)
describing the electron motion along the equilibrium cu:cle w1th radius Ry(), where
REHI) = cl*{ey®yp), go=¢(I) (hereafter, the condition e®Pyu>0 should be con-
sidered to be fulfilied), with the revolution frequency wo(Z)=rwv.(I)signl/Ry(I),
where o, (I)= c[I |/£5Ro(J). It should be noted that the state ¥ corresponds to the
electron motion in the ‘reduced’ configuration space along a circle with radius Ry([),
while the motion along a spiral with the same radius and the velocity along the axis z
equal to Z=ck./g corresponds to the state Wy in the ‘total’ configuration space

(0, . 2).
The electron energy at the equﬂlbnum revolution orbit is equal to

Eo(I) ﬂ.(+) |A1(Io) = E(DUR (I) +C£o ’ (83)

The Floquet solution of the system in variations which is skew-orthogonal to the
vector ay(z, I)=(0,0, 0, w,(1)) is defined as follows

a(z, ) =¢e"(a. 0, —ia™", —-prp/aw)T

84
(1) =|wod) |+ 2— 0} 1) 9
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where

Voo =%,

( 2+ 03 fc?), a=(gwo(I}/ ).
A condition of existence of the complex germ r*(I) formed by the vectors ay(x, I} and
a(t, I) results from (84): u+2—u? /c*>0.

Now we shall turn to the construction of the quasi-classical spectrum of the energy
levels E\{#) corresponding at #— 0 to an electron motion along the equilibrium orbit
Al(I,) with the energy Ey= Ey(I). The condition of the angular momentum quanitiza-
tion I =#l(h), where #l(#) — I, at 2~ 0 results from equation (65). Then, according to
(9) and (56) one has

3 1 v? ck; ck, o5
(@)= 2+ eﬂRDsm O, ~ . COS T, @y (85)
where 7= tp/a)n(I ). Thus, we turn to case 2 considered in Appendix 2. Making use of
(A2.10) it is not difficult to get the expresswn for the spin-orbital interaction energy
ES

hw, h|w
E§=hw“§=§( — l2“| -2 2)W) t=%1. (86)

Finally, for the energy levels of an electron we shall obtain

E; . {(0) =EPu(h) + hlogD) |2 +u—v i) cH?

1 & (A-vi{YcA)W }
X{v+=t= + O (h? v=0,1,2,...
{ 2 2@2+u—vi{l)/cH? b )
I=+1, %2,... E=x1. (87)

In partaicular, it follows from (87) that there is no explicit dependence of the electron
energy on its spin for the electric field of the ‘Coulomb’ type (#=-1). In this
case a renumbering of the energy eveIs takes place: E,, (h)—E;,.(#), where
v =v+(1+)/2.

The quasi-classical set of the orthonormal functions corresponding to the energy
levels (87) is represented in the form

ezk z en‘cp ( )1.'2 - s , (P_RU)
ﬁ‘E} v, ;(qv h) DSl 114 (R Pyl )IIZ{BXP( a (p - Rﬂ) ‘th)Hv(a W) }H-i- (r)fé'
(88)

where Ry= Ry(#!). The expressions for the spinors f;, {=*1, are given in (A2.10).
The functions (88) are localized at 2—0 in a small neighbourhood of the circle with
radius RQ = R(](Io).

4.3. Spectral series of the relativistic electron moving along equatorial orbits in the
Coulomb field

In the Coulomb field with the potential Ay= Zey/p the classical Hamiltonian function
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is as follows

Zek :
l‘*)(p, q) = __;_)_ﬂ_i_ C(pg-i'p*zp:é-’c-p"z Sm—z Bpé_*_mzcz)ua

Zet '
== +ee(p.q) (89)

where {g°)={(p, €, @) are the spherical coordinates, and e= — g, is an electron charge.
A family of closed phase curves A'(Y) corresponds to the extreme points of the
function Ai™ see Appendix 1): .

AD)y={p,=0,p;=0,p,=1, p=Ry(I), 8=m/2, g =wy(I)z} (90)

which describe the stationary revolutions of an electron along the equatorial orbits
with radius Ry{(I)=1*[Zejmy(l)] and frequency wy(l)=v (I)/Ry(l), where y=
(1—v3% /¢ and v, (I)= Ze}/l. The electron energy at the equilibrium orbit is equal
to Ey({)=mc* (). The complex germ is formed by the vectors

©a(r. 1)=(0,0,0,0, w(l), )T

a(z, N =e""0,ia;?, 0,0, a;, 0)F : 91)
; i, T )
a7, )= e‘”2’(1a 71,0.0, a5, 0, -— W%) w(I) = wy(Dy ()

where a;=1"", a,=(c/(gw,))", &= e(l), W, = (00! Ry) (— 2+ 0% /¢?). The func-
tion z(gq) defined by (9) has the form 7= ¢@/w([). The ‘polarization’ vector B (56) is
directed along the axis 0z and is given by
e = Zedw,
O = Ty YR, &
* From formula (AZ2.5) one finds the spin correction

he
‘;=ha)f;=-? wfl—yh.

(92)

Then the quasi-classical energy spectrum becomes

Ep i) = |:E0(I) + o) (v1 +1%C) + B L)y ~(I) (v2+ ! " ‘3) ] +O(1?)
1=l

Vl,V2=0,1,2,... [=1,2,... C=il. R (93)
For the corresponding leading terms of the quasi-classical eigenstates (60) one gets
- eilip (WLWZ)IIZ
‘ijEf‘v,,,;(q: k)=__ Vitva,, 1, 13172
172 Ry A2 )

0—w/2)? o—mi2)\ (90— Ry
x{exp(—Wf(—zh"-)Hﬂ(Wl(hT)) exp(—W% o k )

xH,z(wz(”T"Ifi))}n+(r)f;. - e
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Here, W.=az!, k=1,2, Ry=R(hl), H,(£) are Hermite polynomials, and f; are the
two-component spinors defined by (A2.5).

Within the non-relativistic limit v, <¢ formula (93) gives a quasi-classical series of
eigenvalues of the Schrédinger operator obtained in [5]:

a?Z?s 1 2
Ep,, o(R)y=—mc? 5 ( + v+ 1)) +0AY (95)

) By !

where a=ej/Ac is the fine structure constant. A correspondence between quantum
numbers of the exact and approximated spectrum was also established there: m,=1,
n,=w +v,, m=1/h, where n, and n; are the radial and orbital quantum numbers,
respectively. It would be interesting to compare (93) with the exact energy spectrum
of a hydrogen-like atom obtained according to the Dirac theory. In this case one has
m=Il+v, n,=v;+3(1-5), m;=1h, h—0.

It should be noted in conclusion that it is not difficult to generalize the results
obtained in this section for the case when the external torsion fields are non-zero (if
any), and in this way to estimate their possible influence on the quasi-classical energy
spectrum. As an example consider a hydrogen atom in the external torsion field of the

type
So=5:p) §=(—8.(p)sin @, S.(p) cos @, 55(0)) (96)

and calculate in this case the spin—orbit coupling energy of an electron Ei=hw}
moving along the equatorial orbit £;= (p=R(I), 8 =a/2, ¢ =w(I)7). In this case the
polarization vector B(z) (56) is given by B(z) = (— B, sinw,7, B, cos w,r, B;) where

U,
B, =51(Ry) _7 So(Ro)

97
By="0 (1 vi/cz)l’z(&(Rg)-—%) o7

from which, according to formula (AZ2.10), one obtains

HHl(R) = ho ¢ (i)

=§h(f—°¥+.(%1 + (%ﬂy@)z} m) ) (98)
T=hi(R)

5. Conclusions

The construction of the quasi-classical spectral series discussed here is substantiated
by an additional assumption that there is no focal points where |((z)|=0 on the
closed phase curve A(E;). This assumption may not hold true for closed curves of
multidimensional non-integrable systems [12]. In this case quantization of closed
trajectories by the complex germ method requires that a number of new auxiliary
constructions [3, 6, 11} should be used.

In the formulas of sections 2 and 3 it was implicitly supposed that equation (9)
defining the hyperplane family r = 7(g) is solvably smoothly and in a single-valued way
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in the small neighbourhood U,(£,) throughout the closed curve I, If this is not the
case, then the curve Iz, should be covered by the neighbourhood U4(E), j=1,...,m,
in each of which cquation (9) permits a smooth solution z/=7/g), and a set of
geometrical objects [A} (Ep), r/(E)} should be constructed and united in a special way
(for details see [4]).

Approaching the quasi-classical quantization of closed orbits by the complex germ
method it is interesting to consider the following problems:

® construction of the quasi-classical spectral series for the case when the closed orbits
Iz, (a projection of A'(E,) onto the configuration space) possesses self-intersection
points;

® solution of the spectral problem in the region of chaotic behaviour of the
corresponding classical system [12, 13];

® relationship between the quantum Berry’s phase and the construction of Maslov’s
canonical operator with complex phase in the case of matrix wave equations [14-
16].
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Appendix 1. Construction of the family [A'(I), r*(I)] for classical systems with one
cyclic variable

Let a case often encountered in applications be considered, when the Hamiltonian
function (1) permits a cyclic angular variable @(mod 2%). In this case it is always
possible to separate a spacial family of closed phase curves A'(f) corresponding to the
motion of a classical particle along an equilibrium circle. Let their construction be
briefly described (see also [51]).

Denote the conjugated momenta to the variable ¢ as I. Fix the numerical interval
;=1 and let the condition

o

be fulfilied. Introduce a one-dimensioal in [ family of the Hamiltonian functions on
the reduced phase space Ry ' x R ™! —

Hl(p: Q)=H(P-, I= Q) IGQ‘I' (A]"z)
Denote the extreme point of the function H{p, g) as #(I) = (py(I), go(D)):
VpHIIFu(f) “‘_"VqHIL;o(!)=0- (A13)

Then it is not difficult to see that at each fixed value of the parameter I € Q, the curve

AI(I) = {pﬂ(I): Is qO(I)s ¢= wD(I )T} (A1.4)
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where

aH )
wold) =§ (pD). I, qoI))

is a closed trajectory of the initial Hamiltonian system (2) lying at the energy level

Eo(fo) =i |A1(In)-

In the configuration space the motion along a closed equilibrinm circle with the period
T(I)=2m/wy(l) corresponds to the trajectory A'().

Construction of the complex germ r*(I) on the family A'(Z) is essentially simpli-
fied, since in this case matrix (5)

Hyag|agy=W({I)

is constant and the procedure of constructing the Floquet solutions satisifying the
conditions of the ‘germ’ existence (8) is reduced to solution of the spectral problem for
the matrix W(I):

W) =iw D, Tm o, = 0. (A1.5)

Then, the desired solutions of the Floquet system {(4) with the matrix W(I) are as
follows

a.(z, I =exp(io ([)7)f.- (Al1.6)

Appendix 2

Here, the formulas for the Floquet solutions of the system (58) used in constructing
the spectral series of the Dirac operator in Section 4 will be presented.

Proposition. All the multiplicators of Eq. (58) are equal to unity in magnitude.

Proof. Let v, be a certain Floquet solution of (58) with the multiplicator 1., then

U;(T'{‘" T)=ch£7§(f). (A21)
Whence it follows ’
Bo(r) + T)oy(r+ T) = |25 (e (7). (A2.2)

It should be noted further that for any two solutions of (58) v,(z) and v,(r) the product
5 1(¥)0s(z) is conserved, from which it follows that
bir+ Thos(r+ T) = b (t)oe(T). (A2.3)

Comparing (A2.2) and (A2.3) we shall obtain the proof.
Now consider two particular cases when the problem of the existence of the
Floquet solutions satisfying conditions (62), (63) is solved in a rather simple way.

Case I. B(r)=% =constant. In this case the monodromy matrix of system (58) is
G(T)=exp{—i(oB)T) and the problem of constructing the multiplicator A.=
exp(—iwiT)) is reduced to solution of the equation

(oB)f; = wif. (A2.4)
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Introduce the unit vector n=%/|B|=(sin # cos @, sin Osin ¢, cos 8). Then (A2.4)
permits a general solution of the type

wi={{B f==%1

e (C(l + & cos 6)1* e‘i*"’:)

fr =W (1— £ cos @)1 g2 o = constant (A2.5)

where the constant spinors f; form a complete and orthonormal set
+ o
Fefi=b D RFTDH (82.6)
¢

Finally, we obtain the following set of Floquet solutions

oD =exp(—il|Bl0)f, . G=%1. (A2.7)

Case 2. B(t)=(—B, sinwyr, B, cos w, 7, By), where wy=2x/T(E), B,, B;=
constant. In this case by means of a unitary transformation o(r)=38é(z), S=
exp( — iwy703/2) equation (58) is reduced to

(—iad—r+(a,9§|))ﬁ(r)=0 (A2.8)

where B = (0, B, B;— w,/2) and, therefore, to case 1 considered above. As a result,
one can get the following set of Floquet solutions

vo(7) = exp( ~i(o3wo/2+ £ |B| )TV fe ‘ (A2.9)

with the characteristic indices
e
w§=§(g+|%|) z=—%1, (A2.10)

Here, the spinors f; are defined by the unit vector n=%/|%B| according to formula
(A2.5).

Appendix 3

Let the Hamiltonian function A*Y(p, ¢) permit a smooth family of T(E)-periodic
closed curves AY(E)={p=P(z, E), ¢g= Q(z, E)} such that

;I.(-F)Iﬁ](g)-: E

It may be shown that if £ = E,+ hE, + O(h?) then the quantization condition (70) and
(65) are equivalent with accuracy to O (k7).

As follows from the comparison of expressions (70) and (64), to prove the latter
statement it is suificient to be convinced that the following relation

SE (P(T.E},dQ(T,E}}=3§ (P(z, Ey), 4Oz, Eg)) + AT (EQ)E, + O (h%). (A3.1)
AYE)

AYEp)
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Indeed, in view of the smooth dependence of the family A'(E) on the parameter E,
the integral

WE=$ (P(s, E), 40 E)
ANE)
permits the expansion

RE + O(#Y).

14
W(E)=W(Ey)+ (a—E")
By

It is easy to see that

T(E)

ow . og
3 (E)=T(E) +(P(T(E), B), O(T(E), ENT'(E)+(P(s, £). 55 ()

0

(A3.2)

For the T(E)-periodic function Q(z, E) make use of the Fourier series expansion

L
06 8)= 3, exp( 7g85) .0

n=—c

Whence it follows directly

3 T(E) & = 2zint\ 8C,
%(r, E)=- T((E))Ta_f(T’EHz; exp(%) 25 (). (833)

Substituting (A3.3) into (A3.2) and making use of the T(E)-periodicity condition
of the function P(z, E) one gets

Y
35 E)=T(E). (A3.4)

As a result, the expression W(E) takes the form W(E)=W(Ey) + T(E)hE, + O ().
This is the proof of the required statement.
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