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Quantization of closed orbits in Dirac theory by Maslov’s 
complex germ method 

V G Bagrov, V V Belov. A Yu Trifonov and A A Yevseyevich 
High Current Electronics Institute. Russian Academy of Sciences, Siberian Division, 
Akademichesky Ave. 4, Tomsk, 634055, Russia 

Received 9 November 1992, in final form 1 April 1993 

Abstract. On the basis of Maslov’s complex germ method for the Dirac operator in 
external electromagnetic and torsion fields the quasi-classical spectral series corresponding 
within the limit h-0 to the electron motion along closed stable orbits has been 
constructed. The quai-classical energy spectrum is found from the condition of quantiza- 
tion of these orbits, and the quasi-classical asymptotics corresponding to the latter form a 
complete set of localized~quantum state. The method is illustrated in all details by the 
electron motion in the axial fields as an example. 

1. Introduction 

It is well known that there is a.variety of quantum-mechanical problems which can be 
solved if only one used a construction of quasi-classical asymptotics. A strict theory of 
quasi-classical asymptotics with real phases-which generalizes, in the multidimensional 
case, the Einstein-Brillouin-Keller method, and which includes both the spectral and 
Couchy problems for A-’-(pseudo) differential operators was developed~ in papers 

Maslov’s method-a method of the canonic operator (with real phase)-imposes 
strict conditions on the classical system: an n-parametric family of n-dimensional 
Lagrangian tori which.are invariant with respect to the phase flow generated by the 
corresponding Hamiltonian system is to exist, which, in fact, is equaivalent to its 
complete integrability. 

When a case cannot be integrated a family of n-dimensional Lagrangian tori does 
not exist. Nevertheless, it is often the case that the Hamiltonian system which cannot 
be integrated, possesses ton with smaller dimensions than that of the configuration 
space. This situation is typical of classical systems possessing a certain (incomplete) set 
of symmetries, e.g. for a charge in an external electromagnetic field,with axial 
symmetry. 

A theory of the quasi-classical quantization of non-integrable Hamiltonian systems 
was developed in [3-61 for the scalar h-’-(pseudo) differential operators, and in [3,7] 
for systems with matrix Hamiltonians as well as equations with an operator-valued 
symbol. The construction of the Maslov’s complex germ underlies this theory. 

The main point of this theory is the fact that the task of constructing the quasi- 
classical asymptotics YE in spectral problems for both scalar and matrix A-’-(pseudo) 
differential operators ( E  is a spectral parameter) is reduced to constructing geometri- 
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cal objects in the 2n-dimensional phase space-a family of the Lagrangian manifolds 
Ak(u) with a complex germ ."(U) (o=(ol,. . . , wk) are parameters of this family 
EEO). Ax(m)  result from solutions of the classical Hamiltonian system and their 
dimension is Ock<n. In the case of finite motions Ah(@) are known as isotropic 
incompletely dimensional Lagrangian tori. The complex germ ?(U) is generated by a 
special set of n linearly-independent complex solutions of the system in variations 
which are the linearization of the initial Hamiltonian system in a neighbourhood of 

It should be noted that the task of finding the family of isotropic manifolds with a 
complex germ is a separate and complicated problem in itself. In particular, in [4,5] it 
was noted that the problem of the existence of a complex germ is equivalent to the 
orbital stability of the manifolds Ak(m), and for the case k= 1 it is solved in terms of 
the Floquet theory for linear Hamiltonian systems with periodic coefficients. At k>2 
the problem of constructing r"(w), which is naturally associated with the multidimen- 
sional analogue of the Floquet theory, has not yet been studied sufficiently (see [7] for 
details). 

A discrete set [Ak("), r"(oN)] which generates a spectral series (YSN, EN@), 
h+O) is chosen from the family of isotropic tori with the complex germ [A'"(). r'(o)] 
according to the quantization condition of the Bohr-Somerfeld type. Here, N is a set 
of quantum numbers, and EN@) are eigenvalues corresponding to the quasi-classical 
eigenfunctions YEN. Under these conditions it is important to take into account that in 
terms of the quasi-classical approach to the spectral quantum problems one deals with 
construction of only single spectral series in this or that domain of the energy spectrum 
E ' s  EN@) s E". The classification of the spectral series is based on that of motions of 
the corresponding non-integrable classical system with respect to the incompletely 
dimensional Lagrangian tori Ah(m), and the numbering of the energy levels EN, on the 
quantization conditions for these motions. 

The quasi-classical asymptotin YE,, obtained are well approximated almost every- 
where by the functions of the form YEN=eih"q, where, unlike the usual real WKB 

method, the phase S is complex and Im S30. In view of this the functions YE,possess 
the following important property: within the limit h+O they are localized in a small 
(of the order of h"*) neighbourhood of the 'light' domain where Im S= 0. This domain 
is the projection of a family of phase trajectories which form the tori Ax(") onto the 
configuration space of the classical system. Hereafter, the wavefunctions YEN will be 
referred to as the stationary trajectory-coherent states (TCS) and the corresponding 
approximation in the spectral problems of quantum mechanics-the stationary 
trajectory-coherent approximation (the Tc-approximation). 

The main aim of this work is to give a consistent description of construction of the 
quasi-classical spectral series of the Dirac operator by the complex germ method for 
the case when the corresponding relativistic classical system permits a family of one- 
dimensional (k= 1) invariant isotropic manifolds A'@)-closed phase curves. 

V G Bagrov et a1 

Ak(O). 

2. Complex germ method for closed orbits 

2.1. Families of closed phase c u r w  with the complex germ 
Let A(+)(p ,  q) be the classical Hamiltonian function defined on the 2n-dimensional 
phase space R;xR;, q=(q"), p = ( p b ) ,  a , b = G .  Compare this with a one- 
parametric in Eo famly of the Hamiltonian functions 
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H(P, q, Eo) =d(+YP3 4)  -Eo E' Eo< E". (1) 
Suppose that the Hamiltonian system 

permits a smooth family of closed phase curves 

AJ(E0) = (p =P(z ,  Eo), q = Q (7, Eo), E' <EOSE'? (3) 
which satisfy the condition [ QlZO. The period in z of the trajectory A'(Eo) will be 
denoted by T(Eo). 

me Hamiltonian system (2) is linearized in a neighbourhood of phase curves (3). 
As a result, one obtains the system in variations 

du 
- dz (z, Eo) = HvAR(~, EoM, Eo) (4) 

where a(z, Eo) = (W(z, Eo), Z ( t ,  Eo))T is, in a general case, the complex 2n-~ 
dimensional vector, and HvAR(z. Eo) is the 2n X 2n-matrix of the form 

where n x n-matrices 

were calculated for the points of the phase trajectory A'(Eo). Equation (4) is a linear 
Hamiltonian system with periodic coefficients, and one can use the general Floquet 
theory for such systems. 

It should be reminded that the solution u(z,Eo) of (4) is called the Floquet 
solution, if there exists a constant d, the Floquet multiplicator, such that 

&+ T(Eo), Eo)=Mr, Eo) -a <z~< a. (6)  
It is the multiplicators that are eigenvalues of the monodromi matrix of (4). The 
numbers w determined from the condition A=ewTcEd are called the characteristic 
Floquet indices. One of the obvious Floquet solutions of (4) is a real solution 

adz, = (&z, Eo), Q(z, EO))' (7) 
with the multiplicator &,= 1. 

Now, suppose~that system (4) permits a set of n - 1  complex Floquet solutions 
ax@, Eo) =(Wk(z, Eo), Z,(s, Eo))', k = m  which are linearly independent of the 
solution ao(z, Eo) and which satisfy the conditions 

{aj, uj}=O { ~ , , & } = 2 i 6 ~ ~  ~ i , j = m  I ,  k = l , n - l  

adr+ T(Eo)) = exp(iwx(Eo)T(Eo))ak(z) Imwk=O (8) 
where the symbol * denotes complex conjugation and the braces {. , .}imply the anti- 
symmetric scalar product. Then the complex n-dimensional plane in c% enveloped by 
the vectors uj(z, Eo) is called a complex germ in the point (P(z, Eo), Q(z, Eo)) on the 
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phase curve AL(Eo) and is denoted as rn(r). A family of planes {r"(r), O S z S  T(Eo)}  is 
the complex germ r"(Eo) on A'@,). As was pointed out in the introduction, the 
geometric object [A1(Eo), ?"(Eo)] is a central construction responsible for the quasi- 
classical results of the spectral quantum problems corresponding to the motion of the 
classical non-integrable system along the incompletely dimensional isotropic tori. 

Hereafter, it will be supposed that the above family of the T(E,)-periodic Floquet 
solutions (8) has been constucted. In a particular, but important for applications, case 
when the family of the Hamiltonian functions (1) permits the cyclic variable 
q ( m o d k ) ,  the constuction of the complex germ is described in Appendix 1. 

2.2 Construction of the 'occupation numbers representation' 

Let lEo={qE=Q'(z,Eo)} be a projection of the closed curve AL(E0) onto the con- 
figuration space &. Consider the equation 

v ~ ( Q ( ~ ) Q " ( ~ >  Eo) (qb-  Q '(z, Eo)) = O  (9) 
where yob(Q(~))  =rl.b(q)Iq=ec.), and yJq) is the metric of the configuration space $. 
Due to the condition lQl#O in a small neighbourhood U6(Q(r, Eo)) of each point 
Q(z, E,) of the curve 1, equation (9) can be solved with respect to the parameter r 
and, thus, it gives a parametrized-in-r family of hyperplanes z=r(4. Eo) such that 

Q% a = l  + O h -  Qc.11). (10) 
Henceforth, expressions like A(T) should be understood as taken at r= z(q, Eo). From 
the vectors W,(z, Eo) and Zi(z, Eo), which form the Floquet solutions (8) ai(z, E,),  
j==, we shali make up square matrices B(z, Eo) and C(r, Eo) of order n 

B = ( P ,  w,,. . . ,W--,) c= (Q, z,, . . . , Z d ) . ~  (11) 
The matrix C(z, Eo) is non-singular and, in this way, we find the symmetric matrix 
G = BC-I with the positively defined imaginary part 

ImG>O. (12) 
We shall introduce a complex phase S(q, Eo) = [s(r, q, E0)]l.=+,, in the neighbour- 

hood Ud(16), where 

S(z, q, Eo) = [ (W, Eo), !&.Eo)) dt+ (E-Eo)r 
0 

+ P ( z ,  Eo, Aq) + &Aq7 ' 3 7 ,  Eo)Aq). (13) 
Hereafter (. , .) implies a Euclidean scalar vector product, A q = q - Q ( z ,  Eo), and 
E = Eo+ hEl + O(h'). 

We shall introduce a class of functions of the form 

. . (14) 

where K is a multi-index: K = ( K ' , K * , .  ..,KJ, / K ( = ~ c ~ + K ~ +  '-'+K., (Aq/V%p= 
ll:=l(Aq'/fi)y=, c,(r): 88;+@', S ( q ,  Eo) is the phase defined above, and No@) is the 
normalization factor (with respect to &-norm). Let the operator E: Yi+Yi be 
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denotedthrough 6(h'), a>O. For this operator an asymptotic estimation ~ ~ & ~ ~ L 2 ~ n ~ n )  = 
O(h"), VQIE Y ;  in the limit at h-+O is fulfilled. In particular, for the operators 

A q = q - Q ( r ,  Fo) A$=$-P(z ,  Eo) (15) 

Aq= 6(h"') Aj? = 6(h1'3. (16) 

where j? = - ihtlplr=ronrt, we shall have 

The creation and annihilation operators are associated with the vectors ai(z, E,), 
zi(z, E,) by the rule 

do=(Q(z), A $ ) - ( P ( 4 ,  A q )  

for which the usual Bose commutation rules hold 

[do, a,] = [do, d:] = [dk,  d i ]  = [dh,  $1 =o 
[dk, d:] = &. 

We shall introduce a 'vacuum' state 

10, z)=No(h)J-In exp (19) 

where J(r.E,)=det C(z,E,), and by using the creation operators 6: we shall 
construct the 'occupation numbers representation', i.e., a set of functions of the form 

It is not difficult to see that functions (20) belong to Y;. We shall compare the classical 
Hamiltonian function A'+)(p, q )  (1) with the Weyl-ordered quadratic operator 

@'=EO + BO +j<(Aq, AZ)(z)Aq) + ( 6 4 ,  Ag)(z)A$) + (Ap,  dj:)(r)Aq) 

+ (4, ag) (4AP) l .  (21) 

AZ)W =,%'(PI 4) p = p ( I , E o )  

Here 

q=Q(r.Eo) 

etc. Then the asymptotic estimation [-ihtl,+(E,-E)+d,]=O(h) holds on the set 
Yi. As a result of equations (18) and (19) it is not difficult to show that functions (20) 
are the 'vacuum' ones for the operator do 

d&, z) = 0 (22) 

( -ihtlr+&+)- E )  / v ,  z) = O.~ (23) 

and satisfy the Schrodinger equation with the square-law Hamiltonian (21) 
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3. Quasi-classical spectral series of the Dirac operator corresponding to the family of 
closed phase trajectories A'(Eo) 

In this section asymptotic spectral series corresponding at h+O to motion of a 
classical particle along closed orbits of the configuration space are constructed for the 
Dirac operator in external electromagnetic and torsion fields. 

V G Bagrou et a1 

3.1. Statement of the problem 

Let the notation used hereafter be specified. The Cartesian coordinates of the 
Minkowski space with the signature (+, -, -, -) will be denoted as xi= 
(ct, x ,  y ,  z)  = (xo,xd), ci, 6, E =  1,2,3; i, j ,  k=O, 1,2,3 and the curvilinear coordinates 
q,=(qo, q"), a, b, c = l ,  2,3; Q , , ~ , . L L , V = ~ ,  1,2,3,  respectively. We shall restrict our- 
selves to the curvilinear coordinate systems with a stationary metric dsz=c2 dtz- 
11.6 (q)dq"dqb, where 

ax* ax6 
a4 84 

Vab=; 8 d 6 7 .  

If one introduces three vectors e. with the components e:=axdl/aq", the metric tensor 
vnb can be represented in the form qab= (eo, eb). 

The Dirac equation in the arbitrary curvilinear coordinate system 4'' in the 
Minkowski space will be written as 

where 

a e  
aqp c 

P, = ih - --A, 

e =  -eo is the electron charge, A, are potentials of the external electromagnetic field, 
and S, is the torsion pseudo-vector. The Dirac matrices y', are defined by the 
conditions ypy"+ y"yp= 2gr', = iy'y", y s  = - (i/4!)e,..By~y"yayS and can be taken in 

are the Dirac plane matrices in a standard representation. 
In our case the Dirac equation (24) will take the form 

theformyo=p3, y"=q ab eby d I , y s = - p I ,  where y = ( y ' ) = p 3 a , a = p I X .  Herep,,p3,Z 

(- iha,+A,)Y = 0 (25) 

A, = A. + hA, (26) 

where the Weyl-ordered operator AD may be represented as follows 

where 

c .  
$= --a'(e;Pe+ 2 Pae;) +fimcZ+eAo (27) 

ic 3c 
2 (28) &ti=- a 0 0  e I , . + ~ ( - p l S o + Z S ) .  
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Here a’ are the components of the vector-matrix a, and Si=(SO, -S) are the 
Cartesian components of the torsion pseudo-vector. 

Let the spectral problem 

(PD - E)”€ = 0 (29) 
be considered for the Dirac operator fi, (26). In (29)E is the spectral parameter. On 
the set of equation (29) solutions one can introduce the inner product 

(yf‘lyE)D=/d 4 V&.’yE g=det (%J. (30) 

One may denote the closed phase trajectory of a classical electron with the energy Eo 
through .4’(Eo)={p=P(z,Eo), q=Q(z,Eo)} where the functions P(z,E,,), Q(r ,Eo)  
are the T(Eo)-periodic solutions of the Hamiltonian system (1) with the relativistic 
Hamiltonian A(+)(p, q)  =eAo+ 

It is assumed that the sequence of the numbers EN= E N @ )  (where N is a set of the 
corresponding quantum numbers) and that of the functions Yf (4,fz) make a 
quasi-classical spectral series of the Dirac operator gD corresponding in the limit 
h-0 to the family of closed phase curves A1(Eo), if the following conditions hold: 

P= (P’), P’=e:(p,+ (e/c)A,,). 

! 

lim E,(&) = Eo E’ 5 EoG E“ (31) 
h-0 

(1) 

(which implies a correspondence of the quasi-classical set of energy levels EN@) to 
classical motion with energy Eo). 

(2) ( f i D - E N ( f z ) ) y € ~ ( * ) ( q >  h )=0(h3’2 ) .~  (32) 
(3) The functions YE,,(h)(q, fz) at h-0 are localized in a small tube-like neighbour- 
hood Ud(lfo) with the diameter 6 -k”* of the closed curve Z&={q=Q(z, E,,)}. 
(4) The functions YfAhl(q,fz) form at A-0 the orthonormal set of states with an 
accuracy of O(fz’”) 

( ~ f ~ , l ~ E ~ ) D = 6 , V N +  O(h”*). (33) 
Taking into account these properties we call the asymptotic eigenfnnctions Y, the 
stationary trajectory-coherent states (TCS), and the corresponding approximation 
of (1)-(4) for equation (29) a stationary trajectory-coherent approximation. The 
dynamic TCS of the Dirac equation were constructed earlier in papers [lo]. 

3.2. Stationary TCS of the Dirac operator fiD 
Consider the problem of constructing explicitly a set of approximated solutions YEN of 
the Dirac equation (29) which satisfy condition (32). 

The main symbol-matrix Ho(p, q) of the form 

Ho(p, q )  = cnP+p3mcZ+eAo (34) 
corresponds to the Dirac operator fiD (26). Let the spectral properties of matrix (34) 
be considered. The equation 

possesses the two two-fold degenerate eigenvalues 
~ , , f * )  =a(*)f(*) (35) 
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P ( p ,  4) = e A 0  * & ~ = ( c ~ P ~ + m ~ c ~  ) '  (36) 
The eigenvectors f l*) (p ,  4). j =  1,2 corresponding to them are combined into two 
4 x 2-matrices 

where U= (ul, U%, u3) are the Pauli matrices. It is assumed that the Hamiltonian 
function L(*)(p, q) permits a family of closed phase trajectories with the complex 
germ: [A1(&), r3(Ea)]. Then it is possible to use the results of section 2. All the 
denotations are preserved. 

A number of identities wiU be required below, to which the matrices 

n,(r)=n*(P>4) p = p ( r )  
q=Q(d 

hold true, and, according to (37) one has 

1 (l/c)u!j 
n-(4=[2(l+y-3]1" (-(I + y  -9)  

where y=&lmc2, i=e.(z)O' and e.(z)=e,(q)I,,p(r). The matrices n,(z) satisfy the 
orthogonality and completeness conditions 

i&n,=s,, n&=1 5=*1. (39) 
5 

Also, let a be an arbitrary vector, then 
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d 
(5 )  dz 

where 

-IS, = n , d ,  3 n, d4 (44) 

and 

The asymptotic eigenfunctions YE(q, h)  of the Dirac operator (26) are sought for 
as 

YAq, h) = Y E k  s(4), h). (45) 

The asymptotic eigenvalues E corresponding to them and satisfying condition (31) are 
found as the following expansion over h: E= Eo + hEl + O(hz). In this case (32) results 
in the following~conditions 

BoYE(q.h)=O(h) (46) 

(47) 
a 
as 

- ihc(a, Vz) - + f&, Ir=mnrr  - E Y!(q, h)  = O(h3/*) 

where 

a 
V=e”-. 

84“ 

Let us represent YE as a linear combination 

w,(q, t) = [ n + ( ~ ) ~ k + ) ( q ,  h) + n-(z)uL-)(q, h)i. (48) 

It is assumed that the two-component spinors uLr) can be represented as ug)(q,’h) = 
g-1‘4(z)u(z)v(q, It), where ~ ( q ,  h) E Yi  and the spinors u(z) are liable to determi- 
nation. Let the left-hand side of (47) be expanded in the Taylor power series over the 
operator Aq and AD to the second order included, and the asymptotic estimations (16) 
be used. Then, substituting (48) into (47) and making use of equations (40)-(44), one 
obtains 

n+[{l?l+(+, AP)+ eAAo+d(t)(z) -ih(d,+ dids) + h f i + H l n + - E } u g )  
- {d& - c(d,,.AP) + ih(d,- d,d5) - hl?, H,lT-)uL-) 
+ I1- [{ - E1 - (4, A P )  + e AA + d(-)(z) + ih(d3 + d4ds) 

-{d5p1 - c(dl, AP) + ih(d4- d3ds) - h k H l r I + } u g ’ ]  = O(h3”). 

. .  

+ h l ? - ~ ~ r ~ - - - ~ } u p  

(49) 

In (49) through El and d5 we denote the following expressions: Pl= 
(-iha,+~6”-E)-ci ,-~’d(+)+hEI, d 5 = ( u , + ) / [ c y ( l - y ~ z ) ]  and A ~ i s  the square- 
law operator of the type A =d’+gZ. The expression’dkA(z) implies the lcrh term in 
the Taylor power expansion over the Aq and Ap operators of the Weyl-ordered 
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operator A =A($,  4) with the symbol A ( p ,  4): 

V G Bagrov et a1 

Let the spinors uF) in (49) be expanded over huz 
+f i  112uz+)  +fiUz*) + O(h312) 

and the terms to the same powers of h be gathered together, where a chain of the 
following conditions is obtained 

1 2  1 2  
u$-’=O “$-I=% QiuP)  u ~ - ) = z ; ( Q z u $ + ) + Q l u $ + ) )  (52) 

where the Ql and Q2 operators have the form 

h ‘”Ql = dSrio+h112&I h”2Q1 = C(d1, 8 ‘P) (53) 
e 

fiQ2 = h ‘”; (8’Ao)Ql - ds(& + cia) + &(dl, 8%’) - ih(d, - d3ds) +,%?I- H,II+. (54) 

Taking into account equations (52)-(54) a similar procedure for the expression with 
the symbol II, in (49) results in the equation for the two-components spinor U$+) 
which, after further simplifications; is reduced to 

qri ; + h - I n  d5&rio]u$+)= 0. + 
2&CZy*(1 - y - y  & (55) 

Here the vector %(z) (the ‘polarization’ vector) is given by 

where E ( z )  and H(r) are the Cartesian components of the external electromagnetic 
field. If in (55) the spinor U$+) is taken to have the following form 

= (g (z ) ) -1 /41v ,  Z)v(Z) (57) 
then, as it is not difficult to see, in view of (22) and (U), the variable 5 gets detached 
and the equation takes the form of the matrix equation of the Pauli type for the two- 
component spinor U(.) 

Hence, a remarkable conclusion follows: the problem of constructing the states YE 
satisfying equation (47) is reduced to solution of an ordinary linear differential system 
(58) relative to the variable 5 with a subsequent substitution of the function r=r(q) 
into the solution (v(t)+v(z(q))). 
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Using (45), (48) and (52)-(54) one can get the explicit expression for the function 
Y E ( %  h) 

1 1 
rI+(r) +~rII-(Z)(h”zQl+hBz) u$+’(q. A )  

(59) 1 h 112 

+h’” rI+(z)+,n-(r)Q, u~+)(q,h)+hrI+(r)uZ,c+’(q, h). [ 
It follows from (22) and (57), first, that the functions YE satisfies (46) directly, and, 
second, that they are determined only with an accuracy to 0(h1”), since they contain 
the two arbitrary two-component spinors U$+) and U$+). They can be found from the 
higher orders. 

Hereafter, we shall deal only with the leading term of the asymptotic (59) which, 
according to (45) and (57), has the form 

3.3. Quantization condition of closed orbits A1(Eo) 
To construct a quasi-classical spectral series of the Dirac operator fiD let the functions 
satisfying the periodicity condition be selected from the family of functions~ (60) 

It can be shown that this condition leads to the Bohr-Sommerfeld type quantization 
of the family A1(Eo) and distinguishes a discrete set of energy levels E,@) in the 
domain of continuous changing of the parameter Eo(E‘ SEu< E’7. 

It follows from the results obtained in the previous section that in the stationary 
Testate the interaction of the electron spin with the external field is described by 
equations (58) when an electron motion is takento occur along a closed.orbit A1(Eo). 
Since there is the condition %(r+ T(Eo)) =48(z), equation (58) represents a linear 
Hamiltonian system with periodic coefficients. Like in, the case of the Hamiltonian 
system in variation (4) it will be assumed that (58) permits a set of two lineearly 
independent Floquet solutions ut. r= 1 satisfying the orthonofmality and complete- 
ness condition 

q(r+ ?(EON =exp (- iw:(Eo)T(Eo))qir) Imw;(Eo)=O (62) 

@€‘E(% r f T(E0)) =+E( , ,  4. (61) 

+ 2,.vt=6,., u,u,=I. 
t 

(63) 

Some of the principal properties of the Floqnet solutions of (58) are given in 
Appendix 2. 

Now it is not difficult to find the conditions under which relation (61) holds. 
Substituting into (61) the explicit form of the function (60) and making use of (8) 
and (62) one gets the quantization condition for the family [A1(Eo), r3(Eo)] as follows 

W”) 1” (P(z ,  Eo), Q(r, E,))dr+ hT(Eo)E1 
2 

=Zdzl+hT(Eo) cwk(Eo)(vk+ 1/2) + + O(h2). (64) 
(k-1 
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Whence it follows, for example, that (61) is sure to be fulfilled if the conditions are 
satisfied 
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(P(7 ,  Eo), Q(7, Eo))dz=2,zhl(h) r 
Here the integer sequence I(h) and the parameter h should be tied by the condition 

where Eo is the given value of the electron classical energy corresponding to the closed 
orbit A1(Eo). In this case condition (65) defines a discrete set of energy values 
EP)(h) =Eo(hl(h)) in the neighbourhood of Eo such that 

Thus, equations(65) and (66) determine the spectral sequence of energy levels up to 
O ( h 3  as follows 

") =E,. "I, ,.&) = EjOW + m% .Ah) + 0 (0 (67) 

EP(h) = Eo(hl(h)) (68) 

where 

2 

E!'?,,,.,(h)= wdEl"(h))(vk+ 112) +ol(EjO'(h)). (69) 
k = l  

It can be shown (see Appendix 3) that in expanding with respect to h,  h+O, the 
quantization conditions (65), (66) are equivalent with the accuracy to O(hZ)  to the 
quantization condition of the Bohr-Sommerfeld type for the family AI@), where 
E = Eo+ hEl + 0 (e*) 

4. Quasi-classical spectral series of the Dirac operator in axially symmetric 
electromagnetic fields 

As follows from the previous sections, while defining the spectral series of the Dirac 
operator, the construction of the complex germ r"(Eo), i.e. a set of n Floquet solutions 
of the system in variations satisfying condition (8) is mainly used. The conditions 
which the family of closed phase curves A'(&) is to satisfy so that the complex germ 
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should exist. may be obtained, as has been pointed out in the introduction, in terms of 
the Floquet general theory and they are given in [?.I. 

In the case when the classical Hamiltonian function permits only one cyclic angular 
variable (see Appendix l), the problem of the complex germ existence is solved in a 
fairly simple way (see, for example, [5 ] ) .  Below three examples of such systems are 
considered. and the quasi-classical spectral series of the Dirac operator corresponding 
to an electron motion along an equilibrium circle are constructed for the family A([). 
To simplify the description, in the first and second cases the torsion fields are taken to 
be equal to zero. 

4.1. Spectral series of relativistic electron mouing in axially symmetric magnetic field 
with weak focusing 
In~cylindrical coordinates (4') = (p, p, z) let the electromagnetic field potentials be 
taken as 

. 

where O< q < 1 is the focusing parameter, and b = constant. The corresponding 
relativistic Hamiltonian function is as follows 

Function (72) permits the cyclic angular variable p(mod 2z) addefines the family of 
phase curves A'(I) corresponding to a stable electron motion along the circle with the 
radius Ro(I),  the revolution frequency wu(I)  and the orbital angular momentump, = I 
(see Appendix 1): 

A'( I )={p=R, ( I ) .  9 =wo(I)r,  z= O,p,=O,p,=l,p,=O}, (73) 

where , 

wu(Z) = eH(R,)I&,, = €(I) ,  and H(Ro) = b/R,P(I) is the magnetic field magnitude on 
the equilibrium orbit (73). The Floquet solutions of the system in variations forming 
the complex germ r3(I)-have the form 

ao(z, I )  = (0, 0, 0.0, OO(Ij, 0)' 

a,(z, I )  = e i y o ,  0, ia;', 0, 0, a')' w1(I)=Wg(I)(q)'lZ . ' (74) 

oz(I)  =wo(I)( l  -q)"* 
ia, 

Ro(1 -q)'12' 

where ak=(c /~owk)1'2 ,  k =  1 , Z .  According to equation (9) the family of hyperplanes 
t= z(q) = p/wo(I)  corresponds to the A'([) curve. 
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Now, let an explict expression for energy spectrum (67) be obtained. Condition 
(65) leads to quantization of the electron orbital angular momentum: I=hl(h). Here, 
a set of integer numbers [(h) is defined by the condition 

lim hl(h) =Iu 
t,-U 

where the value I,, corresponds to the A'&) orbit lying at a given energy level 
E,,(Io) =,t(+)l,,~(,~). Calculate the energy correction E;  due to the interaction of the 
electron spin with the external field. If no torsion fields are available, the 'polariza- 
tion' vector a(r), defined in (56) is given by 

e 
%=---H(R,,) 

2% (75) 

where H(R,,) = (0, 0, -H(Ro))  and is constant. Whence, according to (A2.5) one has 
E;=hw;=h~lF$l=~&uu, c= f 1. The expression for the quasi-classical series of the 
energy levels takes the form 

where Efo)(h) = (e2R@)HZ(R,(hl))  +mZc4)"' is the leading term of the electron 
energy. Now, make use of the definition of the cyclic frequency 

Then, with the accuracy to O(h2) the following expansion is true: 

h+O, @ ' 
Ej?w(h)=Ep(h) +,o,(hl)+ O ( V )  

E,,"l,y.I(h)=EW</2(h)+F 2 o,(WIv,+112)+ O(h'). (77) 

from which it follows that 
2 

K=l 

The value ( I +  U2)h is likely to be a total angular electon momentum allowing for'its 
spin. 

For the quasi-classical wavefunctions '& (60) corresponding to the energy levels 
(77), it is not difficult to obtain the following expression 
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where 

H&) are Hermite polynomials, and the constant spinors h, [= ? 1 are defined in 
(A2.5). It follows from the form of functions (78) that at A-0 they are localized in 
the neighbourhood of the equilibiiium circle with radius Ro(I) and that they form a 
complete orthonormal set of functions. 

It should be noted that the quasi-classical energy spectrum (77) constructed above 
coincides with that obtained earlier in [8] by the~variable separation method in the 
harmonic aproximation. 

4.2. Electron spectral series in the class of axially symmetric focusing electric fields 
Consider an electron motion in an axially symmetric focusing electric field which, in 
cylindrical coordinates (4") = (p .  q?,zj, is defined by the potentials 

A P P Z  = A  = A  =O ~ Ao=Qop" (79) 
where Qo=constant, and y is the focusing parameter. 

In this case the Dirac operator AD permits the symmetry operator p.= -ih&, 
therefore, at the very beginning it is reasonable to separate the variable z and look for 
the quasi-classical stationary states YE in the form 

The classical Hamiltonian function corresponds to the function YE 
Y&. h)=e"+€(P,q,h) .  (80) 

A(+)(p.  q)  = cs(p. q) +ecPopL (81) 
where ~ ( p ,  q) = (pi+p-'p:+ kZ+mzcz)"2. In the phase space possessing the coordi- 
nates (p,,, pm, p, q) the Hamiltonian system with the Hamiltonian (81) defines a family 
of closed phase curves 

describing the electron motion along the equilibrium circle with radius %(I) ,  where 
Rg+'(I) =c12/(e~oQoy),  cO=&(I) (hereafter, the condition eQoy>O should be con- 
sidered to be fulfilled), with the revolution frequency oo(I )  = ~ ~ ( 1 )  signZ/Ro(I), 
where u.( I )=cl l l /~~R~(I) .  It should be noted that the state YE corresponds to the 
electron motion in the 'reduced configuration space along a circle with radius Ro(I), 
while the motion along a spiral with the same radius and the velocity along the axis z 
equal to i = ckZ/z0 corresponds to the state YE in the 'total' configuration space 

Ayzj =ip= ~ ~ ( 1 1 ,  = wo(~)t, p p =  0, pl=z) ~~ ~(82) 

(P.  f P 3  2). 
The electron energy at the equilibrium revolution orbit is equal to 

Eo(I) =A'+) = eQoR$(I) +ctO. (83) 
The Floquet solution of the system in variations which is skew-orthogonal to the 
vector uo(t, I )  = (0, 0, 0, o O ( I ) )  is defined as follows 

a(z, I )  =ei..(a. 0, -ia-', -.Wp,/ao)T 
(84) u ( I )  = [ uo(I )  [ (p  + 2 - U: /CZ)"* 
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where 
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0 0  

’@ Ro w =-(-Z+uZ,/c2), a=  ( ~ ~ w ~ ( Z ) / c ) ’ ” .  

A condition of existence of the complex germ r”(Z) formed by the vectors ao(z, I )  and 
a(s , I )  results from (84):p+2-u:/c2>0. 

Now we shall turn to the construction of the quasi-classical spectrum of the energy 
levels E&) corresponding at h-0 to an electron motion along the equilibrium orbit 
Al(Zo) with the energy Eo=Eo(Z). The condition of the angular momentum quanitiza- 
tion Z=hl(h), where hl(h)+ZOat A-0 results from equation (65). Then, according to 
(9) and (56) one has 

ck, 
sin ooz, --cos ooz, wo 

EORO 

where s=q/w,(Z). Thus, we turn to case 2 considered in Appendiw 2. Making use of 
(A2.10) it is not difficult to get the expression for the spin-orbital interaction energy 
E;: 

Finally, for the energy levels of an electron we shall obtain 

E/, , t (h)  =ErO!cn(h) + hlwo(Z) I(2 +P - ~ : ( ~ ) ~ C 2 ) 1 1 2  

1 = + 1 , + 2 ,  ... 1;=&1. (87) 

In partaicular, it follows from (87) that there is no explicit dependence of the electron 
energy on its spin for the electric field of the ‘Coulomb‘ type (,U= - 1). In this 
case a renumbering of the energy evels takes place: El,.,5(h)-E,.v,(h), where 

The quasi-classical set of the orthonormal functions corresponding to the energy 
v’  = Y + (1 + g / 2 .  

levels (87) is represented in the form 

where Ro=Ro(hl). The expressions for the spinors fc, c=~kl, are given in (A2.10). 
The functions (88) are localized at h-0 in a small neighbourhood of the circle with 
radius Ro = Ro(Io). 

4.3. Spectral series of the relativistic electron mooing along equatorial orbits in the 
Coulomb field 
In the Coulomb field with the potential A,= Zedp the classical Hamiltonian function 
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is as follows 

where (q‘) = ( p ,  0, .p) are the spherical coordinates, and e = -eo is an electron charge. 
A family of closed phase curves A’(I) corresponds to the extreme points of the 
function ly) see Appendix 1): 

A ~ I )  = {p,= o,p,= o,P,= I ,  p = R ~ ( I ) ,  e = 6 2 ,  Q, = O~(I)ZI~ (90) 
which describe the stationary revolutions of an electron along the equatorial orbits 
with radius &(I) =I’I[Ze~my(I)] and frequency wo(I) = uL(Z)/Ro(Z), where y= 
(1 - U:/C’)~’’  and u l ( I )  = Ze$I. The electron energy at the equilibrium orbit is equal 
to ,&(I) = ~ C ? ~ ‘ ( I ) .  The complex gem is formed by the vectors 

a,(?. I )  = (O,O, 0, 0, 0)’ 

a,(z, I )  = eimo’(O, ia;’, 0, 0, al,  O)T (91) 

n~(z,I)=e‘~2‘ ia;’,O.O,a,,O, --Wpp, ia2 )T w2(I)  =&I)y-yI )  ( U? . .  

where a,=I-”’, a2=(c/(~ow2))1’2,  E ~ = E ( ~ ) ,  W w ~ = ( w o / R o ) ( - 2 + u ~ / c 2 ) .  The fnnc- 
tion r(q) defined by (9) has the form r=.p/wo(I). The ‘polarization’ vector %I (56)’ is 
directed along the axis Oz and is given by 

From formula (A2.5) one finds the spin correction 

EE=hwi=-w,(l- h t  y - 1 ). 2 

Then the quasi-classical energy spectrum becomes 

v1,v2=0, 1,2,. . . l = l , 2 , .  . . [=+1. (93) 
For the corresponding leading terms of the quasi-classical eigenstates (60) one gets 
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Here, W,=a;’, k = l , 2 ,  Ro=Ro(hl), Hv(E) are Hermite polynomials, andft are the 
two-component spinors defined by (A2.5). 

Within the non-relativistic limit uI < c formula (93) gives a quasi-classical series of 
eigenvalues of the Schrodinger operator obtained in [5]: 
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where a=e$hc is the fine structure constant. A correspondence between quantum 
numbers of the exact and approximated spectrum was also established there: nl=l, 
n,=v,+v2, nl=l /h,  where n, and nl are the radial and orbital quantum numbers, 
respectively. It would be interesting to compare (93) with the exact energy spectrum 
of a hydrogen-like atom obtained according to the Dirac theory. In this case one has 

It should be noted in conclusion that it is not difficult to generalize the results 
obtained in this section for the case when the external torsion fields are non-zero (if 
any), and in this way to estimate their possible influence on the quasi-classical energy 
spectrum. As an example consider a hydrogen atom in the external torsion field of the 
t w e  

nl=l+vl, n,=v,++(l-C), n,;=l/h, A-0. 

so = So( P)  s=(-&(p)s in9 ,SL(d  C O S ~ , S & ~ )  (96) 

and calculate in this case the spin-orbit coupling energy of an electron E;=hw; 
moving along the equatorial orbit fr=(p=Ro(Z),  O=z/2, 9=wO(l)z).  In this case the 
polarization vector %(z) (56) is given by %(t) = (- %I sin mot ,  SI cos woz, S3) where 

U L  
31 =Si(Ro) -7 

from which, according to formula (A2.10), one obtains 

E”,hl(h)) =hoi(hl(h)) 

5. Conclusions 

The construction of the quasi-classical spectral series discussed here is substantiated 
by an additional assumption that there is no focal points where I Q ( t ) l = O  on the 
closed phase curve A’&). This assumption may not hold true for closed curves of 
multidimensional non-integrable systems [12]. In this case quantization of closed 
trajectories by the complex germ method requires that a number of new auxiliary 
constructions [3,6,11] should be used. 

In the formulas of sections 2 and 3 it was implicitly supposed that equation (9) 
defining the hyperplane family z= s(q) is solvably smoothly and in a single-valued way 
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in the small neighbourhood Ua(Eo) throughout the closed curve lEo. If this is not the 
case, then the curve lE, should be covered by the neighbourhood U$(Eo), j =  1, . . . , m, 
in each of which equation (9) permits a smooth solution r'=d(q), and a set of 
geometrical objects [Aj(Eo), r?(Eo)] should be constructed and united in a special way 
(for details see [4]). 

Approaching the quasi-classical quantization of closed orbits by the complex germ 
method it is interesting to consider the following problems: 

construction of the quasi-classical spectral series for the case when the closed orbits 
lEa (a projection of A1(Eo) onto the configuration space) possesses self-intersection 
points; 
solution of the spectral problem in the region of chaotic behaviour of the 
corresponding classical system [12,13]; 
relationship between the quantum Berry's phase and the construction of Maslog's 
canonical operator with complex phase in the case of matrix wave equations 114- 
161. 

Acknowledgments 

This work was partially supported by CIS1 VENT, Moscow and by the Russian 
Fundamental Research Foundation (Grant 93-02-3158). 

Appendix 1. Construction of the family [A'(I), r"(I)l for classical systems with one 
cyclic variable 

Let a case often encountered in applications be considered, when the Hamiltonian 
function (1) permits a cyclic angular variable p(mod Zz). In this case it is always 
possible to separate a spacial family of closed phase curves A'(I) corresponding to the 
motion of a classical particle along an equilibrium circle. Let their construction be 
briefly described (see also [!ill). 

Denote the conjugated momenta to the variable p as I .  Fix the numerical interval 
52: 3 I and let the condition 

('51.1) 

be fulfilled. Introduce a one-dimensioal in I family of the Hamiltonian functions on 
the reduced phase space R;-'x R;-' 

f i : ( P , d = H ( P , L q )  I E Q:. ~(A1.2) 

Denote the extreme point of the function &p, q) as f0(I)= ( p o ( I ) ,  q,,(I)): 

vpfi~,o=v~~:/~( : )=o.  (A1.3) 

Then it is not difficult to see that at each fixed value of the parameter I E  8: the curve 

A1(O=bo(O, I ,  q o ( 0 ,  p = ~ o ( I ) d  (A1.4) 
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where 
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is a closed trajectory of the initial Hamiltonian system (2) lying at the energy level 

EoUo) =A(+)l,qiop 

In the configuration space the motion along a closed equilibrium circle with the period 
T ( I )  =Znlo,(Z) corresponds to the trajectory A'(I). 

Construction of the complex germ r"(2) on the family A'(2) is essentially simpli- 
fied, since in this case matrix ( 5 )  

HV.4Rlhl(l~) = w(I) 
is constant and the procedure of constructing the Floquet solutions satisifying the 
conditions of the 'germ' existence. (8) is reduced to solution of the spectral problem for 
the matrix W ( I ) :  

W(OfX=iwdOfX Im wt=O. (A1.5) 

Then, the desired solutions of the Floquet system (4) with the matrix W(1) are as 
follows 

~ ( z ,  I)=exp(idI)z)fX. (A1.6) 

Appendix 2 

Here, the formulas for the Floquet solutions of the system (58) used in constructing 
the spectral series of the Dirac operator in Section 4 will be presented. 

Proposition. All the multiplicators of Eq. (58) are equal to unity in magnitude. 

Proof. Let U <  be a certain Floquet solution of (58) with the ,multiplicator A,, then 

ur(z + T )  = 1, vs(r). W.1) 

t t ( r )+T)~g(z+T)=la t12 t t ( r )~ t ( r ) .  W . 2 )  

Whence it follows 

It should be noted further that for any two solutions of (58) v,(z) and U&) the product 
5,(r)u,(r) is conserved, from which it follows that 

(A2.3) 

Comparing (A2.2) and (A2.3) we shall obtain the proof. 
Now consider two particular cases when the problem of the existence of the 

Floquet solutions satisfying conditions (62), (63) is solved in a rather simple way. 

Case 1. B(r) =B= constant. In this case the monodromy matrix of system (58) is 
G(T)=exp( -i(&)T) and the problem of constructing the multiplicator it= 
exp( - iw i T ) )  is reduced to solution of the equation 

A ,(z + T)us(7 + T )  = A r(Z)ut (T) .  

(&)A = wr. (A2.4) 



Quantization of closed orbits by Marloo's complex germ method 1041 

Introduce the unit vector n = %/I 0 I = (sin 0 cos q, sin 0 sin q, cos e). Then (A2.4) 
permits a general solution of the type 

w ; = f I s l  f = + 1  

a = wnstant (A2.5) 
cos q l f 2  e-irpl: 

(1 - f cos e)1f2 eiqf2 

where the constant spinorsh form a complete and orthonormal set 

(A2.6) 
5 

Finally, we obtain the following set of Floquet solutions 

q ( ~ )  = exp( - ic1% Iz)ft ~ f = ~ +  1. (A2.7) 

Case2. 93(~)=(-93B,sinwo~, O,CQSW,T, S3), where wo=2n/T(E,) ,  a1, a3= 
constant. In this case by means of a unitary transformation u(z)=SB(z), S= 
exp( - iwozuj/2) equation (58) is reduced to 

where $= (0, SL, B3- w,/2) and, therefore. to case 1 considered above. As a result, 
one can get the following set of Floquet solutions 

U ~ T )  = exp( - i(030,/2 + 51% I)z)fc 
with the characteristic indices 

w;= 5($+ pi) z= - f 1. (A2.10) 

Here, the spinors fc are defined by the unit vector n = %/I 0 I according to formula 
(A2.5). 

Appendix 3 

Let the Hamiltonian function I'+)(p,  q)  permit a smooth family of T(E)-periodic 
closed curves A'(@ = { p  = P(z ,  E ) ,  q = Q ( E ,  E ) }  such that 

l(+)/A'(E)= E. 
It may be shown that if E = Eo+ hEl + O(A*) then the quantization condition (70) and 
(65) are equivalent with accuracy to 0 ( A 2 ) .  

As follows from the comparison of expressions (70) and (64), to prove the latter 
statement it is sufficient to be convinced that the following relation 

(P( s ,  Eo); dQ (5,  Eo)) + hT(Eo)E, + 0 (h'). (A3.1) P A'(&) 

$ W. E ) ,  dQ@, E))= 
N E )  
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Indeed, in view of the smooth dependence of the family A'(E) on the parameter E, 
the integral 

permits the expansion 

It is easy to see that 

. .- 
(A3.2) 

For the T(E)-periodic function Q(t ,  E )  make use of the Fourier series expansion 

Whence it follows directly 

Substituting (A3.3) into (A3.2) and making use of the T(E)-periodicity condition 
of the function P(z ,  E )  one gets 

aE 
- ( E )  T(E). aE (A3.4) 

As a result, the expression W(E) takes the form W ( E )  = W(Eo) + T(Eo)AEt+ O(h2). 
This is the proof of the required statement. 
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